О чем рассказала самая глубокая в мире скважина

Cтатьи, Наука и образование 7 429

Сегодня научные изыскания человечества добрались до рубежей Солнечной системы: мы высаживали космические аппараты на планеты, их спутники, астероиды, кометы, отправили миссии к поясу Койпера и пересекли границу гелиопаузы. С помощью телескопов мы видим события, происходившие 13 миллиардов лет назад — когда Вселенной исполнилось всего несколько сотен миллионов лет. На фоне этого интересно оценить, насколько хорошо мы знаем нашу Землю. Лучший способ узнать ее внутреннее строение — пробурить скважину: чем глубже, тем лучше. Самая глубокая скважина на Земле — Кольская сверхглубокая, или СГ-3. В 1990 году ее глубина достигла 12 километров 262 метров. Если сравнить эту цифру с радиусом нашей планеты, то окажется, что это всего 0,2 процента пути до центра Земли. Но даже этого оказалось достаточно, чтобы перевернуть представления о строении земной коры.

На что похожа Кольская сверхглубокая?

Если вы представляете себе скважину как шахту, по которой можно спускаться на лифте в самые недра земли или хотя бы на пару километров, то это совсем не так. Диаметр бурового инструмента, с помощью которого инженеры создавали скважину, составлял всего 21,4 сантиметра. Верхний двухкилометровый отрезок скважины немного шире — его расширяли до 39,4 сантиметра, но все равно человеку туда никак не попасть. Чтобы представить себе пропорции скважины, лучшей аналогией будет 57-метровая швейная игла с диаметром в 1 миллиметр, немного утолщенная с одного конца.

Но и это представление будет упрощенным. За время бурения на скважине происходило несколько аварий — часть буровой колонны при этом оказывалась под землей без возможности ее извлечь. Поэтому несколько раз скважину начинали проходить заново, с отметок в семь и девять километров. Есть четыре крупных ответвления и около десятка мелких. У основных ответвлений разная предельная глубина: два из них пересекают отметку в 12 километров, еще два не доходят до нее всего на 200-400 метров. Заметим, что глубина Марианской впадины на километр меньше — 10 994 метра относительно уровня моря.

Более того, было бы ошибкой воспринимать скважину как отвесную линию. Из-за того, что на разных глубинах породы обладают разными механическими свойствами, бур в ходе работы отклонялся к менее плотным областям. Поэтому в большом масштабе профиль Кольской сверхглубокой выглядит как немного изогнутая проволока с несколькими ответвлениями.

Подойдя к скважине сегодня, мы увидим лишь верхнюю часть — металлический люк, привинченный к устью двенадцатью массивными болтами. Надпись на нем сделана с ошибкой, правильная глубина — 12 262 метра.

Как бурили сверхглубокую скважину?

Для начала необходимо отметить, что СГ-3 изначально задумывалась именно для научных целей. Исследователи выбрали для бурения место, где на поверхность земли выходили древние породы — возрастом до трех миллиардов лет. Один из аргументов при разведке состоял в том, что молодые осадочные породы были хорошо изучены при добыче нефти, а глубоко в древние слои никто еще не бурил. Кроме того, здесь находились и крупные медно-никелевые месторождения, разведка которых была бы полезным дополнением к научной миссии скважины.

Бурение началось в 1970 году. Первая часть скважины была пробурена серийной установкой «Уралмаш-4Э» — ее обычно использовали для бурения нефтяных скважин. Модификация установки позволила достичь глубины 7 километров 263 метра. На это ушло четыре года. Затем установку сменили на «Уралмаш-15000», названную так в честь запланированной глубины скважины — 15 километров. Новая буровая была разработана специально для Кольской сверхглубокой: бурение на таких больших глубинах требовало серьезной доработки техники и материалов. К примеру, один только вес буровой колонны при 15-километровой глубине достигал 200 тонн. Сама установка могла поднимать груз вплоть до 400 тонн.

Буровая колонна состоит из труб, соединенных между собой. С ее помощью инженеры опускают на дно скважины инструмент для бурения, и она же обеспечивает его работу. На конце колонны устанавливали специальные 46-метровые турбобуры, приводимые в движение потоком воды с поверхности. Они позволяли вращать дробящий породу инструмент отдельно от всей колонны.

Коронки, с помощью которых буровая колонна вгрызалась в гранит, вызывают ассоциации с футуристическими деталями от робота — несколько вращающихся шипастых дисков, соединенных с турбиной сверху. Одной такой коронки хватало всего на четыре часа работы — это примерно соответствует проходу на 7-10 метров, после чего всю буровую колонну нужно поднимать, разбирать и затем опускать заново. Постоянные спуски и подъемы сами по себе занимали до 8 часов.

Даже трубы для колонны в Кольской сверхглубокой пришлось использовать необычные. На глубине постепенно растут температура и давление, и, как рассказывают инженеры, при температурах свыше 150-160 градусов сталь серийных труб размягчается и хуже держит многотонные нагрузки — из-за этого возрастает вероятность опасных деформаций и обрыва колонны. Поэтому разработчики выбрали более легкие и термостойкие алюминиевые сплавы. Каждая из труб имела длину около 33 метров и диаметр около 20 сантиметров — немного уже самой скважины.

Однако даже специально разработанные материалы не выдерживали условий бурения. После первого семикилометрового отрезка на дальнейшее бурение до отметки 12 000 метров ушло почти десять лет и более 50 километров труб. Инженеры столкнулись с тем, что ниже семи километров породы стали менее плотными и трещиноватыми — вязкими для бура. Кроме того, ствол самой скважины исказил форму и стал эллиптичным. В результате несколько раз колонна обрывалась, и, не имея возможности поднять ее обратно, инженеры вынуждены были бетонировать ответвление скважины и проходить ствол заново, теряя годы работы.
Одна из таких крупных аварий заставила буровиков в 1984 году забетонировать ответвление скважины, достигшее глубины 12 066 метров. Бурение пришлось начать заново с 7-километровой отметки. Этому предшествовала пауза в работе со скважиной — в тот момент существование СГ-3 рассекретили, а в Москве прошел международный геологический конгресс Геоэкспо, делегаты которого посетили объект.

Как рассказывают очевидцы аварии, после возобновления работ колонна пробурила скважину еще на девять метров вниз. После четырех часов бурения рабочие приготовились поднимать колонну обратно, но она «не пошла». Буровики решили, что труба где-то «прилипла» к стенкам скважины, и увеличили мощность на подъем. Нагрузка резко уменьшилась. Постепенно разбирая колонну на 33-метровые свечки, рабочие добрались до очередного отрезка, заканчивающегося неровным нижним краем: турбобур и еще пять километров труб остались в скважине, поднять их не удалось.

Вновь достигнуть 12-километровой отметки буровикам удалось лишь к 1990 году, тогда же был установлен и рекорд погружения — 12 262 метра. Затем произошла новая авария, а с 1994 года работы на скважине были остановлены.

Научная миссия сверхглубокой

Скважину исследовали целым набором геологических и геофизических методов, начиная от сбора керна (столбика пород, соответствующих заданным глубинам) и заканчивая радиационными и сейсмологическими измерениями. К примеру, керн забирали с помощью керноприемников со специальными бурами — они похожи на трубы с зазубренными краями. В центре этих труб 6-7 сантиметровые отверстия, куда попадает порода.
Но даже с этой, казалось бы, простой (за исключением потребности поднимать этот керн с многокилометровой глубины) методикой возникали сложности. Из-за бурового раствора, — того самого, что приводил в движение бур, — керн напитывался жидкостью и изменял свои свойства. Кроме того, условия в глубине и на поверхности земли сильно различаются — образцы растрескивались от перепада давления.

На разных глубинах выход керна сильно отличался. Если на пяти километрах со 100-метрового отрезка можно было рассчитывать на 30 сантиметров керна, то при глубинах свыше девяти километров вместо столбика пород геологи получали набор шайб из плотной породы.

Исследования материала, поднятого из скважины, позволили сделать несколько важных выводов. Во-первых, строение земной коры нельзя упрощать до композиции из нескольких слоев. На это раньше указывали сейсмологические данные — геофизики видели волны, которые казались отраженными от гладкой границы. Исследования на СГ-3 показали, что такая видимость может возникнуть и при сложном распределении пород.
Это предположение сказалось на проектировании скважины — ученые ожидали, что на глубине семи километров ствол войдет в базальтовые породы, однако они не встретились и на 12-километровой отметке. Зато вместо базальта геологи обнаружили породы, обладавшие большим количеством трещин и низкой плотностью, чего совсем нельзя было ожидать от многокилометровой глубины. Больше того, в трещинах нашлись следы подземных вод — высказывались даже предположения, что они образованы прямой реакцией кислорода и водорода в толще Земли.

Среди научных результатов нашлись и прикладные — так, на небольших глубинах геологи нашли горизонт медно-никелевых руд, пригодных к добыче. А на глубине 9,5 километра обнаружился слой геохимической аномалии золота — в породе присутствовали микрометровые зерна самородного золота. Концентрации доходили до грамма на тонну породы. Впрочем, вряд ли добыча с такой глубины будет когда-нибудь рентабельна. Но само существование и свойства золотоносного слоя позволили уточнить модели эволюции минералов — петрогенеза.
Отдельно следует рассказать об исследованиях температурных градиентов и радиации. Для такого рода экспериментов используются внутрискважинные приборы, опускаемые на проводах-тросах. Большой проблемой было обеспечить их синхронность с наземным оборудованием, а также обеспечить работу на больших глубинах. К примеру, трудности возникали с тем, что тросы при длине в 12 километров растягивались примерно на 20 метров, что могло сильно снизить точность данных. Чтобы этого избежать, геофизикам пришлось создавать новые методы маркировки расстояний.

Большинство серийных приборов не было рассчитано на работу в суровых условиях нижних ярусов скважины. Поэтому для исследований на больших глубинах ученые применяли оборудование, разработанное специально для Кольской сверхглубокой.

Важнейший результат геотермических исследований — гораздо более высокие температурные градиенты, нежели ожидалось увидеть. Вблизи поверхности скорость роста температуры составляла 11 градусов на километр, до глубины двух километров — 14 градусов на километр. В интервале от 2,2 до 7,5 километра температура росла со скоростью, приближающейся к 24 градусам на километр, хотя существующие модели предсказывали величину в полтора раза меньшую. В результате уже на пятикилометровой глубине приборы фиксировали температуру в 70 градусов Цельсия, а к 12 километрам это значение достигло 220 градусов Цельсия.

Кольская сверхглубокая оказалась непохожей на другие скважины — к примеру, при анализе тепловыделения пород Украинского кристаллического щита и батолитов Сьерра-Невады геологи показали, что с глубиной тепловыделение падает. В СГ-3 оно наоборот росло. Более того, измерения показали, что основным источником тепла, обеспечивающим 45-55 процентов теплового потока, является распад радиоактивных элементов.

Несмотря на то что глубина залегания скважины кажется колоссальной, она не доходит и до трети толщины земной коры в Балтийском щите. Геологи оценивают, что подошва земной коры в этой области проходит примерно в 40 километрах под землей. Поэтому даже если бы СГ-3 достигла запланированной 15-километровой отсечки, до мантии мы бы все равно не добрались.

Такую амбициозную задачу ставили перед собой американские ученые, разрабатывая проект «Мохол». Геологи планировали достигнуть границы Мохоровичича — подземной области, где наблюдается резкая смена скорости распространения звуковых волн. Считается, что она связана с границей между корой и мантией. Стоит отметить, что буровики выбрали в качестве места для скважины дно океана вблизи острова Гуадалупе — расстояние до границы составляло всего несколько километров. Однако глубина самого океана достигала здесь 3,5 километра, что существенно осложняло буровые работы. Первые испытания в 1960-х годах позволили геологам пробурить скважины лишь на 183 метра.

Недавно стало известно о планах воскресить проект глубокого океанического бурения с помощью исследовательского бурового судна JOIDES Resolution. В качестве новой цели геологи выбрали точку в Индийском океане, неподалеку от Африки. Глубина залегания границы Мохоровичича там составляет лишь около 2,5 километра. В декабре 2015-го — январе 2016 года геологам удалось пробурить скважину глубиной в 789 метров — пятую по величине в мире из подводных скважин. Но эта величина — лишь половина от требовавшейся на первом этапе. Впрочем, команда планирует вернуться и завершить начатое.

***

0,2 процента длины пути к центру Земли — не такая уж впечатляющая величина по сравнению с масштабами космических путешествий. Однако следует учитывать, что и граница Солнечной системы не проходит по орбите Нептуна (или даже поясу Койпера). Гравитация Солнца преобладает над звездной вплоть до расстояний в два световых года от светила. Так что если аккуратно все посчитать, то окажется, что и «Вояджер-2» пролетел лишь десятую долю процента длины пути до окраин нашей системы.

Поэтому не стоит расстраиваться тем, как плохо мы знаем «внутренности» собственной планеты. У геологов есть свои телескопы — сейсмические исследования — и свои амбициозные планы по покорению недр. И если астрономы уже успели прикоснуться к солидной части небесных тел в Солнечной системе, то у геологов все самое интересное еще впереди.



Добавить комментарий